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Abstract

We study the Short-and-Sparse (SaS) deconvo-
lution problem of recovering a short signal a0

and a sparse signal x0 from their convolution.
We propose a method based on nonconvex opti-
mization, which under certain conditions recovers
the target short and sparse signals, up to signed
shift symmetry which is intrinsic to this model.
This symmetry plays a central role in shaping the
optimization landscape for deconvolution. We
give a regional analysis, which characterizes this
landscape geometrically, on a union of subspaces.
Our geometric characterization holds when the
length-p0 short signal a0 has shift coherence µ,
and x0 follows a random sparsity model with
rate θ ∈

[
c1
p0
, c2
p0
√
µ+
√
p0

]
· 1

log2 p0
. Based on

this geometry, we give a provable method that
successfully solves SaS deconvolution with high
probability.

1. Introduction
Datasets in a wide range of areas, including neuroscience
(Lewicki, 1998), microscopy (Cheung et al., 2017) and as-
tronomy (Saha, 2007), can be modeled as superpositions
of translations of a basic motif. Data of this nature can
be modeled mathematically as a convolution y = a0 ∗ x0,
between a short signal a0 (the motif) and a longer sparse
signal x0, whose nonzero entries indicate where in the sam-
ple the motif is present. A very similar structure arises in
image deblurring (Chan & Wong, 1998), where y is a blurry
image, a0 the blur kernel, and x0 the (edge map) of the
target sharp image.
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Motivated by these and related problems in imaging and
scientific data analysis, we study the Short-and-Sparse (SaS)
Deconvolution problem of recovering a short signal a0 ∈
Rp0 and a sparse signal x0 ∈ Rn (n � p0) from their
length-n cyclic convolution1 y = a0 ∗ x0 ∈ Rn. This
SaS model exhibits a basic scaled shift symmetry: for any
nonzero scalar α and cyclic shift s`[·],(

α s`[a0]
)
∗
(

1
α s−`[x0]

)
= y. (1.1)

Because of this symmetry, we only expect to recover a0

and x0 up to a signed shift (see Figure 1). Our problem of
interest can be stated more formally as:

Problem 1.1 (Short-and-Sparse Deconvolution). Given the
cyclic convolution y = a0 ∗ x0 ∈ Rn of a0 ∈ Rp0 short
(p0 � n), and x0 ∈ Rn sparse, recover a0 and x0, up to a
scaled shift.

Despite a long history and many applications, until recently
very little algorithmic theory was available for SaS decon-
volution. Much of this difficulty can be attributed to the
scale-shift symmetry: natural convex relaxations fail, and
nonconvex formulations exhibit a complicated optimization
landscape, with many equivalent global minimizers (scaled
shifts of the ground truth) and additional local minimizers
(scaled shift truncations of the ground truth), and a vari-
ety of critical points (Zhang et al., 2017; 2018). Currently
available theory guarantees approximate recovery of a trun-
cation2 of a shift s`[a0], rather than guaranteeing recovery
of a0 as a whole, and requires certain (complicated) condi-
tions on the convolution matrix associated with a0 (Zhang
et al., 2018).

In this paper, describe an algorithm which, under sim-
pler conditions, exactly recovers a scaled shift of the pair
(a0,x0). Our algorithm is based on a formulation first intro-
duced in (Zhang et al., 2017), which casts the deconvolution
problem as (nonconvex) optimization over the sphere. We
characterize the geometry of this objective function, and
show that near a certain union of subspaces, every local
minimizer is very close to a signed shift of a0. Based on

1Our result applies to direct convolution by zero padding both
a0 and x0.

2I.e., the portion of the shifted signal s`[a0] that falls in the
window {0, . . . , p0 − 1}.
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Figure 1. Shift symmetry in Short-and-Sparse deconvolution. An
observation y (left) is a convolution of a short signal a0 and a
sparse signal x0 (top right) can be equivalently expressed as a
convolution of s`[a0] and s−`[x0], where s`[·] denotes a shift `
samples. The ground truth signals a0 and x0 can only be identified
up to a scaled shift.

this geometric analysis, we give provable methods for SaS
deconvolution that exactly recover a scaled shift of (a0,x0)
whenever a0 is shift-incoherent and x0 is a sufficiently
sparse random vector. Our geometric analysis highlights the
role of symmetry in shaping the objective landscape for SaS
deconvolution.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our optimization approach and modeling
assumptions. Section 3 introduces our main results — both
geometric and algorithmic — and compares them to the
literature. In Section 4 we present a experimental result
which corroborates our theoretical claim. Finally, Section 5
discusses two main limitations of our analysis and describes
directions for future work.

2. Formulation and Assumptions
2.1. Nonconvex SaS over the Sphere

Our starting point is the (natural) formulation

min
a,x

1
2 ‖a ∗ x− y‖

2
2

Data Fidelity
+ λ ‖x‖1

Sparsity
s.t. ‖a‖2 = 1. (2.1)

We term this optimization problem the Bilinear Lasso, for its
resemblance to Lasso estimator in statistics. Indeed, letting

ϕlasso(a) ≡ min
x

{
1
2 ‖a ∗ x− y‖

2
2 + λ ‖x‖1

}
(2.2)

denote the optimal Lasso cost, we see that (2.1) simply
optimizes ϕlasso with respect to a:

mina ϕlasso(a) s.t. ‖a‖2 = 1. (2.3)

In (2.1)-(2.3), we constrain a to have unit `2 norm. This
constraint breaks the scale ambiguity between a and x.
Moreover, the choice of constraint manifold has surpris-
ingly strong implications for computation: if a is instead
constrained to the simplex, the problem admits trivial
global minimizers. In contrast, local minima of the sphere-
constrained formulation often correspond to shifts (or shift
truncations (Zhang et al., 2017)) of the ground truth a0.

The problem (2.3) is defined in terms of the optimal Lasso
cost. This function is challenging to analyze, especially far
away from a0. (Zhang et al., 2017) analyzes the local min-
ima of a simplification of (2.3), obtained by approximating3

the data fidelity term as
1
2 ‖a ∗ x− y‖

2
2 = 1

2 ‖a ∗ x‖
2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 ,

≈ 1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 . (2.4)

This yields a simpler objective function

ϕ`1(a) = min
x

{
1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 + λ ‖x‖1

}
.

(2.5)
We make one further simplification to this problem, replac-
ing the nondifferentiable penalty ‖·‖1 with a smooth ap-
proximation ρ(x).4 Our analysis allows for a variety of
smooth sparsity surrogates ρ(x); for concreteness, we state
our main results for the particular penalty5

ρ(x) =
∑
i

(
x2
i + δ2

)1/2
. (2.6)

For δ > 0, this is a smooth function of x; as δ ↘ 0 it
approaches ‖x‖1. Replacing ‖·‖1 with ρ(·), we obtain the
objective function which will be our main object of study,

ϕρ(a) = min
x

{
1
2 ‖x‖

2
2 − 〈a ∗ x,y〉+ 1

2 ‖y‖
2
2 + λρ(x)

}
.

(2.7)
As in (Zhang et al., 2017), we optimize ϕρ(a) over the
sphere Sp−1:

min
a

ϕρ(a) s.t. a ∈ Sp−1 (2.8)

Here, we set p = 3p0 − 2. As we will see, optimizing over
this slightly higher dimensional sphere enables us to recover
a (full) shift of a0, rather than a truncated shift. Our ap-
proach will leverage the following fact: if we view a ∈ Sp−1
as indexed by coordinates W = {−p0 + 1, . . . , 2p0 − 1} ,
then for any shifts ` ∈ {−p0 + 1, . . . , p0 − 1}, the support
of `-shifted short signal s`[a0] is entirely contained in inter-
val W . We will give a provable method which recovers a
scaled version of one of these canonical shifts.

2.2. Analysis Setting and Assumptions

For convenience, we assume that a0 has unit `2 norm, i.e.,
a0 ∈ Sp0−16. Our analysis makes two main assumptions,
on the short motif a0 and the sparse map x0, respectively:

3For a generic a, we have 〈si[a], sj [a]〉 ≈ 0 and hence
‖a ∗ x‖22 ≈ ‖e0 ∗ x‖

2
2 = ‖x‖22.

4Objective ϕ`1 is not twice differentiable everywhere, hence
cannot be minimized with conventional second order methods.

5This surrogate is often named as the pseudo-Huber function.
6This is purely a technical convenience. Our theory guarantees

recovery of a signed shift (±s`[a0],±s−`[x0]) of the truth. If
‖a0‖2 6= 1, identical reasoning implies that our method recovers
a scaled shift

(
αs`[a0], α−1s−`[x0]

)
with α = ± 1

‖a0‖2
.
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Figure 2. Sparsity-coherence tradeoff: We show three families of
motifs a0 with varying coherence µ (top), with their maximum
allowable sparsity θ and number of copies θp0 within each length-
p0 window respectively (bot). When the target motif has smaller
shift-coherence µ, our result allows larger θ, and vise versa. This
sparsity-coherence tradeoff is made precise in our main result
Theorem 3.1, which, loosely speaking, asserts that when θ /
1/(p0

√
µ+
√
p0), our method succeeds.

The first is that distinct shifts a0 have small inner product.
We define the shift coherence of µ(a0) to be the largest
inner product between distinct shifts:

µ(a0) = max
` 6=0
|〈a0, s`[a0]〉| . (2.9)

µ(a0) is bounded between 0 and 1. Our theory allows any µ
smaller than some numerical constant. Figure 2 shows three
examples of families of a0 that satisfy this assumption:

• Spiky. When a0 is close to the Dirac delta δ0, the shift
coherence µ(a0) ≈ 0.7 Here, the observed signal y
consists of a superposition of sharp pulses. This is
arguably the easiest instance of SaS deconvolution.

• Generic. If a0 is chosen uniformly at random from
the sphere Sp0−1, its coherence is bounded as µ(a0) /√

1/p0 with high probability.

• Tapered Generic Lowpass. Here, a0 is generated by
taking a random conjugate symmetric superposition
of the first L length-p0 Discrete Fourier Transform
(DFT) basis signals, windowing (e.g., with Hamming
window) and normalizing to unit `2 norm. When L =
p0
√

1− β, with high probability µ(a0) / β. In this
model, µ does not have to diminish as p0 grows – it
can be a fixed constant.8

7The use of “≈” here suppresses constant and log factors.
8The upper right panel of Figure 2 is generated using random

DFT components with frequencies smaller then one-third Nyquist.
Such a kernel is incoherent, with high probability. Many commonly
occurring low-pass kernels have µ(a0) larger – very close to one.
One of the most important limitations of our results is that they do
not provide guarantees in this highly coherent situation.

Intuitively speaking, problems with smaller µ are easier to
solve, a claim which will be made precise in our results.

We assume that x0 is a sparse random vector, under
Bernoulli-Gaussian distribution, with rate θ. Concretely
speaking, we assume x0i = ωigi, where ωi ∼ Ber(θ),
gi ∼ N (0, 1) with all random variables are jointly indepen-
dent. We write this as

x0 ∼i.i.d. BG(θ). (2.10)

Here, θ is the probability that a given entry x0i is nonzero.
Problems with smaller θ are easier to solve. In the extreme
case, when θ � 1/p0, the observation y contains many
isolated copies of the motif a0, and a0 can be determined by
direct inspection. Our analysis will focus on the nontrivial
scenario, when θ ' 1/p0.

Our technical results will articulate sparsity-coherence trade-
offs, in which smaller coherence µ enables larger θ, and
vice-versa. More specifically, in our main theorem, the
sparsity-coherence relationship is captured in the form

θ / 1/(p0
√
µ+
√
p0). (2.11)

When a0 is very shift-incoherent (µ ≈ 0), our method suc-
ceeds when each length-p0 window contains about

√
p0

copies of a0. When µ is larger (as in the generic low-
pass model), our method succeeds as long as relatively few
copies of a0 overlap in the observed signal. In Figure 2,
we illustrate these tradeoffs for the three models described
above.

3. Main Results: Geometry and Algorithms
3.1. Geometry of the Objective ϕρ

The goal in SaS deconvolution is to recover a0 (and x0) up
to a signed shift — i.e., we wish to recover some ±s`[a0].
The shifts ±s`[a0] play a key role in shaping the landscape
of ϕρ. In particular, we will argue that over a certain subset
of the sphere, every local minimum of ϕρ is close to some
±s`[a0].

To gain intuition into the properties of ϕρ, we first visualize
this function in the vicinity of a single shift s`[a0] of the
ground truth a0. In Figure 3-(a), we plot the function value
of ϕρ over B`2,r(s`[a0]) ∩ Sp−1, where B`2,r(a) is a ball
of radius r around a. We make two observations:

• The objective function ϕρ is strongly convex on this
neighborhood of s`[a0].

• There is a local minimizer very close to s`[a0].

We next visualize the objective function ϕρ near the linear
span of two different shifts s`1 [a0] and s`2 [a0]. More pre-
cisely, we plot ϕρ near the intersection (Figure 3-(b)) of the
sphere Sp−1 and the linear subspace

3
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ϕρ(a)
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Figure 3. Geometry of ϕρ near span of shift(s) of a0. (i) A portion of the sphere Sp−1 near s`[a0] (bot) colored according to height of ϕρ
(top); ϕρ is strongly convex in this region, and it has a minimizer very close to s`[a0]. (ii) Each pair of shifts s`1 [a0], s`2 [a0] defines a
linear subspace S{`1,`2} of Rp (left), in which every local minimum of ϕρ near S{`1,`2} is close to either s`1 [a0] or s`2 [a0] (right); there
is a negative curvature in the middle of s`1 [a0], s`2 [a0], and ϕρ is convex in direction away from S{`1,`2}. (iii) The subspace S{`1,`2,`3}
is three-dimensional; its intersection with the sphere Sp−1 is isomorphic to a two-dimensional sphere (left). On this set, ϕρ has local
minimizers near each of the s`i [a0], and are the only minimizers near S{`1,`2,`3} (right).

S{`1,`2} =
{
α1s`1 [a0] +α2s`2 [a0]

∣∣α ∈ R2
}
.

We make three observations:

• Again, there is a local minimizer near each shift s`[a0].

• These are the only local minimizers in the vicinity of
S{`1,`2}. In particular, the objective function ϕ exhibits
negative curvature along S{`1,`2} at any superposition
α1s`1 [a0] +α2s`2 [a0] whose weights α1 and α2 are
balanced, i.e., |α1| ≈ |α2|.

• Furthermore, the function ϕρ exhibits positive curva-
ture in directions away from the subspace S`1,`2 .

Finally, we visualize ϕρ over the intersection (Figure 3-
(c)) of the sphere Sp−1 with the linear span of three shifts
s`1 [a0], s`2 [a0], s`3 [a0] of the true kernel a0:

S{`1,`2,`3} =
{
α1s`1 [a0] +α2s`2 [a0] +α3s`3 [a0]

∣∣α ∈ R3
}
.

Again, there is a local minimizer near each signed shift.
At roughly balanced superpositions of shifts, the objective
function exhibits negative curvature. As a result, again, the
only local minimizers are close to signed shifts.

Our main geometric result will show that these properties
obtain on every subspace spanned by a few shifts of a0.
Indeed, for each subset

τ ⊆ {−p0 + 1, . . . , p0 − 1} , (3.1)

define a linear subspace

Sτ =
{∑

`∈τ α`s`[a0]
∣∣α ∈ R2p0−1

}
. (3.2)

The subspace Sτ is the linear span of the shifts s`[a0] in-
dexed by ` in the set τ . Our geometric theory will show that
with high probability the function ϕρ has no spurious local
minimizers near any Sτ for which τ is not too large – say,

|τ | ≤ 4θp0. Combining all of these subspaces into a single
geometric object, define the union of subspaces

Σ4θp0 =
⋃
|τ |≤4θp0 Sτ . (3.3)

Figure 4 gives a schematic portrait of this set. We claim:

• In the neighborhood of Σ4θp0 , all local minimizers are
near signed shifts.

• The value of ϕρ grows in directions away from Σ4θp0 .

Our main result formalizes the above observations, under
two key assumptions: first, that the sparsity rate θ is suffi-
ciently small (relative to the shift coherence µ of p0), and,
second, the signal length n is sufficiently large:
Theorem 3.1 (Main Geometric Theorem). Let y = a0 ∗x0

with a0 ∈ Sp0−1 µ-shift coherent and x0 ∼i.i.d. BG(θ) ∈
Rn with sparsity rate

θ ∈
[
c1
p0
,

c2
p0
√
µ+
√
p0

]
· 1

log2 p0
. (3.4)

Choose ρ(x) =
√
x2 + δ2 and set λ = 0.1/

√
p0θ in ϕρ.

Then there exists δ > 0 and numerical constant c such
that if n ≥ poly(p0), with high probability, every local
minimizer ā of ϕρ over Σ4θp0 satisfies ‖ā− σs`[a0]‖2 ≤
cmax

{
µ, p−10

}
for some signed shift σs`[a0] of the true

kernel. Above, c1, c2 > 0 are positive numerical constants.

Proof. See Appendix B.

The upper bound on θ in (3.4) yields the tradeoff between
coherence and sparsity described in Figure 2. Simply put,
when a0 is better conditioned (as a kernel), its coherence µ
is smaller and x0 can be denser.

At a technical level, our proof of Theorem 3.1 shows that (i)
ϕρ(a) is strongly convex in the vicinity of each signed shift,

4



S`1,`2 S`1,`3

S`2,`3

Σ4θp0

ϕρ(a)

Figure 4. Geometry of ϕρ over the union of subspaces Σ4θp0 . We
show schematic representation of the union of subspaces Σ4θp0

(left). For each set τ of at most 4θp0 shifts, we have a subspace
Sτ , by which ϕρ has good geometry near (right).

and that at every other point a near Σ4θp0 , there is either
(ii) a nonzero gradient or (iii) a direction of strict negative
curvature; furthermore (iv) the function ϕρ grows away
from Σ4θp0 . Points (ii)-(iii) imply that near Σ4θp0 there are
no “flat” saddles: every saddle point has a direction of strict
negative curvature. We will leverage these properties to
propose an efficient algorithm for finding a local minimizer
near Σ4θp0 . Moreover, this minimizer is close enough to
a shift (here, ‖ā− s`[a0]‖2 / µ) for us to exactly recover
s`[a0]: we will give a refinement algorithm that produces
(±s`[a0],±s−`[x0]).

3.2. Provable Algorithm for SaS Deconvolution

The objective function ϕρ has good geometric properties on
(and near!) the union of subspaces Σ4θp0 . In this section,
we show how to use give an efficient method that exactly
recovers a0 and x0, up to shift symmetry. Although our
geometric analysis only controls ϕρ near Σ4θp0 , we will
give a descent method which, with appropriate initialization
a(0), produces iterates a(1), . . . ,a(k), . . . that remain close
to Σ4θp0 for all k. In short, it is easy to start near Σ4θp0

and easy to stay near Σ4θp0 . After finding a local minimizer
ā, we refine it to produce a signed shift of (a0,x0) using
alternating minimization.

Our algorithm starts with a initialization scheme which gen-
erates a(0) near the union of subspaces Σ4θp0 , which con-
sists of linear combinations of just a few shifts of a0. How
can we find a point near this union? Notice that the data y
also consists of a linear combination of just a few shifts of
a0 Indeed:

y = a0 ∗ x0 =
∑
`∈supp(x0)

x0`s`[a0]. (3.5)

A length-p0 segment of data y0,...,p0−1 = [y0, . . . ,yp0−1]T

captures portions of roughly 2θp0 � 4θp0 shifts s`[a0].

Many of these copies of a0 are truncated by the restriction to

Data y Kernel a0 Sparse x0

Windowed Data a(−1) αisi[a0] + αjsj [a0]Initialization a(0)

= ∗

≈

Figure 5. Data-driven initialization. Using a piece of the observed
data y to generate an initial point that is close to a superposition
of shifts s`[a0] of the ground truth. Data y = a0 ∗ x0 is a
superposition of shifts of the true kernel a0 (top). A length-p0
windowed y contains pieces of just a few shifts as a(−1), one step
of the generalized power method approximately fills in its missing
pieces, yielding a(0) as a near superposition of shifts of a0 (bot).

{0, . . . , p0 − 1}. A relatively simple remedy is as follows:
first, we zero-pad y0,...,p0−1 to length p = 3p0 − 2, giving[

0p0−1;y0; · · · ;yp0−1;0p0−1
]
. (3.6)

Zero padding provides enough space to accommodate any
shift s`[a0] with ` ∈ τ . We then perform one step of the
generalized power method9, writing

a(0) = −PSp−1∇ϕ`1
(
PSp−1

[
0p0−1;y0; · · · ;yp0−1;0p0−1

])
,

(3.7)
where PSp−1 projects onto the sphere. The reasoning behind
this construction may seem obscure, but can be clarified
after interpreting the gradient ∇ϕρ in terms of its action
on the shifts s`[a0] (see appendix). For now, we note that
this operation has the effect of (approximately) filling in the
missing pieces of the truncated shifts s`[a0] – see Figure 5
for an example. We will prove that with high probability
a(0) is indeed close to Σ4θp0 .

The next key observation is that the function ϕρ grows as
we move away from the subspace Sτ , as shown in Figure 3.
Because of this, a small-stepping descent method will not
move far away from Σ4θp0 . For concreteness, we will ana-
lyze a variant of the curvilinear search method (Goldfarb,
1980; Goldfarb et al., 2017) , which moves in a linear combi-
nation of the negative gradient direction −g and a negative
curvature direction −v. At the k-th iteration, the algorithm
updates a(k+1) as

a(k+1) ← PSp−1

[
a(k) − tg(k) − t2v(k)

]
(3.8)

9The power method for minimizing a quadratic form ξ(a) =
1
2
a∗Ma over the sphere consists of the iteration a 7→
−PSp−1Ma. Notice that in this mapping, −Ma = −∇ξ(a).
The generalized power method, for minimizing a function ϕ over
the sphere consists of repeatedly projecting −∇ϕ onto the sphere,
giving the iteration a 7→ −PSp−1∇ϕ(a). (3.7) can be interpreted
as one step of the generalized power method for the objective
function ϕρ.
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with appropriately chosen step size t. The inclusion of a
negative curvature direction allows the method to avoid
stagnation near saddle points. Indeed, we will prove that
starting from initialization a(0), this method produces a
sequence a(1),a(2), . . . which efficiently converges to a
local minimizer ā that is near some signed shift ±s`[a0] of
the ground truth.

The second step of our algorithm rounds the local minimizer
ā ≈ σs`[a0] to produce an exact solution â = σs`[a0].
As a byproduct, it also exactly recovers the corresponding
signed shift of the true sparse signal, x̂ = σs−`[x0].

Our rounding algorithm is an alternating minimization
scheme, which alternates between minimizing the Lasso
cost over a with x fixed, and minimizing the Lasso cost
over x with a fixed. We make two modifications to this
basic idea, both of which are important for obtaining exact
recovery. First, unlike the standard Lasso cost, which penal-
izes all of the entries of x, we maintain a running estimate
I(k) of the support of x0, and only penalize those entries
that are not in I(k):

1
2 ‖a ∗ x− y‖

2
2 + λ

∑
i 6∈I(k) |xi| . (3.9)

This can be viewed as an extreme form of reweighting (Can-
des et al., 2008). Second, our algorithm gradually decreases
penalty variable λ to 0, so that eventually

â ∗ x̂ ≈ y. (3.10)
This can be viewed as a homotopy or continuation method
(Osborne et al., 2000; Efron et al., 2004). For concreteness,
at k-th iteration the algorithm reads:
Update x:

x(k+1) ← argminx
1
2‖a

(k) ∗ x− y‖22 + λ(k)
∑
i6∈I(k) |xi| ,

Update a:

a(k+1) ← PSp−1

[
argmina

1
2‖a ∗ x

(k+1) − y‖22
]
,

Update λ and I:

λ(k+1) ← 1
2λ

(k), I(k+1) ← supp
(
x(k+1)

)
. (3.11)

We prove that the iterates produced by this sequence of
operations converge to the ground truth at a linear rate, as
long as the initializer ā is sufficiently nearby.

Our overall algorithm is summarized as Algorithm 1. Fig-
ure 6 illustrates the main steps of this algorithm. Our main
algorithmic result states that under closely related hypothe-
ses as above, Algorithm 1 produces a signed shift of the
ground truth (a0,x0):
Theorem 3.2 (Main Algorithmic Theorem). Suppose y =
a0∗x0 where a0 ∈ Sp0−1 is µ-truncated shift coherent such
that maxi6=j

∣∣〈ι∗p0si[a0], ι∗p0sj [a0]
〉∣∣ ≤ µ and x0 ∼i.i.d.

BG(θ) ∈ Rn with θ, µ satisfying

θ ∈

[
c1
p0
,

c2(
p0
√
µ+
√
p0
)

log2 p0

]
, µ ≤ c3

log2 n
(3.12)

Initial a(0) a(100) Converged ā Est. â & True a0

Figure 6. Local minimization and refinement. Data-driven initial-
ization a(0) consists of a near-superposition of two shifts (left),
and minimizing ϕρ produces a near shift of a0 as ā (mid). Finally
the rounded solution â using the Lasso is almost identical to a shift
of a0 (right).

Algorithm 1 Short and Sparse Deconvolution

input Observation y, motif length p0, sparsity θ, shift-
coherence µ, and curvature threshold −ηv .
Minimization:
Initialize a(0) ← −PSp−1∇ϕρ

(
PSp−1

[
0p0−1;y0; · · · ;

yp0−1;0p0−1
])

, λ = 0.1/
√
p0θ

10and δ > 0 in ϕρ.
for k = 1 to K1 do

a(k+1) ← PSp−1 [a(k) − tg(k) − t2v(k)]
Here, g(k) is the Riemannian gradient; v(k) is the
eigenvector of smallest Riemannian Hessian eigen-
value if less then−ηv with

〈
v(k), g(k)

〉
≥ 0, otherwise

let v(k) = 0; and t ∈ (0, 0.1/nθ] satisfies
ϕρ(a

(k+1)) < ϕρ(a
(k))− 1

2 t‖g
(k)‖22 − 1

4 t
4ηv‖v(k)‖22

end for
Obtain a near local minimizer ā← a(K1).
Refinement:
Initialize a(0) ← ā, λ(0) ← 10(pθ + log n)(µ + 1/p)
and I(0) ← Sλ(0) [supp(y

∧∗ ā]).
for k = 1 to K2 do
x(k+1)←argminx

1
2‖a

(k)∗x−y‖22+λ(k)
∑
i 6∈I(k) |xi|

a(k+1)← PSp−1

[
argmina

1
2‖a ∗ x

(k+1) − y‖22
]

λ(k+1)← λ(k)/2, I(k+1) ←supp(x(k+1))
end for

output (â, x̂)← (a(K2),x(K2))

for some constant c1, c2, c3 > 0. If the signal lengths n, p0
satisfy n > poly(p0) and p0 > polylog(n), then there
exist δ, ηv > 0 such that with high probability, Algorithm 1
produces (â, x̂) that are equal to the ground truth up to
signed shift symmetry:∥∥(â, x̂)− σ(s`[a0], s−`[x0]

)∥∥
2
≤ ε (3.13)

for some σ ∈ {−1, 1} and ` ∈ {−p0 + 1, . . . , p0 − 1} if
K1 > poly(n, p0) and K2 > polylog(n, p0, ε

−1).

Proof. See Appendix C.

10In practice, we suggest setting λ = cλ/
√
p0θ with cλ ∈

[0.5, 0.8].
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3.3. Relationship to the Literature

Blind deconvolution is a classical problem in signal pro-
cessing (Stockham et al., 1975; Cannon, 1976), and has
been studied under a variety of hypotheses. In this section,
we first discuss the relationship between our results and
the existing literature on the short-and-sparse version of
this problem, and then briefly discuss other deconvolution
variants in the theoretical literature.

The short-and-sparse model arises in a number of applica-
tions. One class of applications involves finding basic motifs
(repeated patterns) in datasets. This motif discovery problem
arises in extracellular spike sorting (Lewicki, 1998; Ekanad-
ham et al., 2011) and calcium imaging (Pnevmatikakis et al.,
2016), where the observed signal exhibits repetitive short
neuron excitation patterns occurring sparsely across time
and/or space. Similarly, electron microscopy images (Che-
ung et al., 2017) arising in study of nanomaterials often
exhibit repeated motifs.

Another significant application of SaS deconvolution is im-
age deblurring. Typically, the blur kernel is small relative
to the image size (short) (Ayers & Dainty, 1988; You &
Kaveh, 1996; Carasso, 2001; Levin et al., 2007; 2011). In
natural image deblurring, the target image is often assumed
to have relatively few sharp edges (Fergus et al., 2006; Joshi
et al., 2008; Levin et al., 2011), and hence have sparse
derivatives. In scientific image deblurring, e.g., in astron-
omy (Lane, 1992; Harmeling et al., 2009; Briers et al., 2013)
and geophysics (Kaaresen & Taxt, 1998), the target image
is often sparse, either in the spatial or wavelet domains,
again leading to variants of the SaS model. The literature
on blind image deconvolution is large; see, e.g., (Kundur &
Hatzinakos, 1996; Campisi & Egiazarian, 2016) for surveys.

Variants of the SaS deconvolution problem arise in many
other areas of engineering as well. Examples include blind
equalization in communications (Sato, 1975; Shalvi & Wein-
stein, 1990; Johnson et al., 1998), dereverberation in sound
engineering (Miyoshi & Kaneda, 1988; Naylor & Gaubitch,
2010) and image super-resolution (Baker & Kanade, 2002;
Shtengel et al., 2009; Yang et al., 2010).

These applications have motivated a great deal of algorith-
mic work on variants of the SaS problem (Lane & Bates,
1987; Bones et al., 1995; Bell & Sejnowski, 1995; Kundur &
Hatzinakos, 1996; Markham & Conchello, 1999; Campisi &
Egiazarian, 2016; Walk et al., 2017). In contrast, relatively
little theory is available to explain when and why algorithms
succeed. Our algorithm minimizes ϕρ as an approximation
to the Lasso cost over the sphere. Our formulation and
results have strong precedent in the literature. Lasso-like ob-
jective functions have been widely used in image deblurring
(You & Kaveh, 1996; Chan & Wong, 1998; Fergus et al.,
2006; Levin et al., 2007; Shan et al., 2008; Xu & Jia, 2010;

Dong et al., 2011; Krishnan et al., 2011; Levin et al., 2011;
Wipf & Zhang, 2014; Perrone & Favaro, 2014; Zhang et al.,
2017). A number of insights have been obtained into the
geometry of sparse deconvolution – in particular, into the
effect of various constraints on a on the presence or absence
of spurious local minimizers. In image deblurring, a simplex
constraint (a ≥ 0 and ‖a‖1 = 1) arises naturally from the
physical structure of the problem (You & Kaveh, 1996; Chan
& Wong, 1998). Perhaps surprisingly, simplex-constrained
deconvolution admits trivial global minimizers, at which
the recovered kernel a is a spike, rather than the target blur
kernel (Levin et al., 2011; Benichoux et al., 2013).

(Wipf & Zhang, 2014) imposes the `2 regularization on a
and observes that this alternative constraint gives more re-
liable algorithm. (Zhang et al., 2017) studies the geometry
of the simplified objective ϕ`1 over the sphere, and proves
that in the dilute limit in which x0 has one nonzero entry,
all strict local minima of ϕ`1 are close to signed shifts trun-
cations of a0. By adopting a different objective function
(based on `4 maximization) over the sphere, (Zhang et al.,
2018) proves that on a certain region of the sphere every
local minimum is near a truncated signed shift of a0, i.e.,
the restriction of s`[a0] to the window {0, . . . , p0 − 1}. The
analysis of (Zhang et al., 2018) allows the sparse sequence
x0 to be denser (θ ∼ p

−2/3
0 for a generic kernel a0, as op-

posed to θ . p
−3/4
0 in our result). Both (Zhang et al., 2017)

and (Zhang et al., 2018) guarantee approximate recovery
of a portion of s`[a0], under complicated conditions on the
kernel a0. Our core optimization problem is very similar to
(Zhang et al., 2017). However, we obtains exact recovery
of both a0 and relatively dense x0, under the much simpler
assumption of shift incoherence.

Other aspects of the SaS problem have been studied theo-
retically. One basic question is under what circumstances
the problem is identifiable, up to the scaled shift ambiguity.
(Choudhary & Mitra, 2015) shows that the problem ill-posed
for worst case (a0,x0) – in particular, for certain support
patterns in which x0 does not have any isolated nonzero
entries. This demonstrates that some modeling assumptions
on the support of the sparse term are needed. Nevertheless,
this worst case structure is unlikely to occur, either under
the Bernoulli model, or in practical deconvolution problems.

Motivated by a variety of applications, many low-
dimensional deconvolution models have been studied in
the theoretical literature. In communication applications,
the signals a0 and x0 either live in known low-dimensional
subspaces, or are sparse in some known dictionary (Ahmed
et al., 2014; Li et al., 2016; Chi, 2016; Ling & Strohmer,
2015; Li et al., 2017; Ling & Strohmer, 2017; Kech &
Krahmer, 2017). These theoretical works assume that
the subspace / dictionary are chosen at random. This
low-dimensional deconvolution model does not exhibit the

7



signed shift ambiguity; nonconvex formulations for this
model exhibit a different structure from that studied here.
In fact, the variant in which both signals belong to known
subspaces can be solved by convex relaxation (Ahmed et al.,
2014). The SaS model does not appear to be amenable to
convexification, and exhibits a more complicated nonconvex
geometry, due to the shift ambiguity. The main motivation
for tackling this model lies in the aforementioned applica-
tions in imaging and data analysis.

(Wang & Chi, 2016; Li & Bresler, 2018) study the re-
lated multi-instance sparse blind deconvolution problem
(MISBD), where there are K observations yi = a0 ∗ xi
consisting of multiple convolutions i = 1, . . . ,K of a ker-
nel a0 and different sparse vectors xi. Both works develop
provable algorithms. There are several key differences with
our work. First, both the proposed algorithms and their
analysis require a0 to be invertible. Second, SaS model and
MISBD are not equivalent despite the apparent similarity
between them. It might seem possible to reduce SaS to
MISBD by dividing the single observation y into K pieces;
this apparent reduction fails due to boundary effects.

4. Experiments
We demonstrate that the tradeoffs between the motif length
p0 and sparsity rate θ produce a transition region for success-
ful SaS deconvolution under generic choices of a0 and x0.
For fixed values of θ ∈ [10−3, 10−2] and p0 ∈ [103, 104],
we draw 50 instances of synthetic data by choosing a0 ∼
Unif(Sp0−1) and x0 ∈ Rn with x0 ∼i.i.d. BG(θ) where
n = 5 × 105. Note that choosing a0 this way implies
µ(a0) ≈ 1√

p0
.

For each instance, we recover a0 and x0 from y = a0 ∗ x0

by minimizing problem (2.5). For ease of computation, we
modify Algorithm 1 by replacing curvilinear search with
accelerated Riemannian gradient descent method (See ap-
pendix M). In Figure 7, we say the local minimizer amin is
sufficiently close to a solution of SaS deconvolution prob-
lem, if

success(amin, ;a0) := {max` |〈s`[a0],amin〉| > 0.95 } .
(4.1)

5. Discussion
The main drawback of our proposed method is that it does
not succeed when the target motif a0 has shift coherence
very close to 1. For instance, a common scenario in image
blind deconvolution involves deblurring an image with a
smooth, low-pass point spread function (e.g., Gaussian blur).
Both our analysis and numerical experiments show that in
this situation minimizing ϕρ does not find the generating
signal pairs (a0,x0) consistently—the minimizer of ϕρ is
often spurious and is not close to any particular shift of a0.

10-3 10-2.8 10-2.6 10-2.4 10-2.2 10-2

104

103.8

103.6

103.4

103.2

103

θ (log scale)

p
0

(l
og

sc
al

e)

Figure 7. Success probability of SaS deconvolution under generic
a0, x0 with varying kernel length p0, and sparsity rate θ. When
sparsity rate decreases sufficiently with respect to kernel length,
successful recovery becomes very likely (brighter), and vice versa
(darker). A transition line is shown with slope log p0

log θ
≈ −2,

implying our method works with high probability when θ / 1√
p0

in generic case.

We do not suggest minimizing ϕρ in this situation. On the
other hand, minimizing the bilinear lasso objective ϕlasso

over the sphere often succeeds even if the true signal pair
(a0,x0) is coherent and dense.

In light of the above observations, we view the analysis
of the bilinear lasso as the most important direction for
future theoretical work on SaS deconvolution. The drop
quadratic formulation studied here has commonalities with
the bilinear lasso: both exhibit local minima at signed shifts,
and both exhibit negative curvature in symmetry breaking
directions. A major difference (and hence, major challenge)
is that gradient methods for bilinear lasso do not retract to
a union of subspaces – they retract to a more complicated,
nonlinear set.

Finally, there are several directions in which our analysis
could be improved. Our lower bounds on the length n of
the random vector x0 required for success are clearly sub-
optimal. We also suspect our sparsity-coherence tradeoff be-
tween µ, θ (roughly, θ / 1/(

√
µp0)) is suboptimal, even for

the ϕρ objective. Articulating optimal sparsity-coherence
tradeoffs for is another interesting direction for future work.
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