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Short-and-Sparse Model Geometry of Objective Landscape Provable Algorithm of SaSD
- Model signals containing repeated (short) motifs: The geometry of ¢apy, over the sphere SP~! is determined by the shifts of a (the solutions of SaSD). = Initialize: Use chunk of y (sum of truncated shifts)
— [ X @ARL, 18 convex near every signed shift, and exhibits negative curvature at points that are superpositions of a few shifts. This regional
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« SasD is harder it ay is more shift-coherent
Problem: SaS Deconvolution (solutions are closer on sphere) or x is denser

(more unknowns).

Given the cyclic convolution y = ap * xy € R" « Refinement: (sketch) Alternating minimize bilinear

of ay € R short (py < n), and xy € R" sparse, Spiky Generic Tapered Generic Lowpass Lasso converges to exact solution at a linear rate.
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Symmetric Solutions in SaSD . : .
T | is the union of subspaces spanned by 4p,¢/ shifts. until one shift left. Write 3(a) as “shift space coefficients” of a:
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- We fix the scale [|al|, = 1. Let y = ag * Ty with ag € SP ! p-shift coherent and xy ~;i;q. BG(0) € R™ with sparsity rate 5C: sphere o\
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Algorithm: Approximate Bilinear Lasso Set p(x) = V2 + 0% and X\ = 0.1//pof in papL. There exists c,d > 0 such that if n > poly(py), with "
B T high probability, every local minimizer a of papL, over Yy, satisfies ||a — asgagl||, < cmax {u, py'}. Discussion

- Natural, effective method to SaSD:bilinear Lasso[1].
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is not recommended in practice), but the ideas are
= To unde.rstand (.1.), we study a simplification: Design a provable algorithm for exact recovery based on the geometry of QapL. useful for developing practical algorithms [2|.
“approximate bilinear Lasso”: . g . .
' The algorithm initializes a¥Y near one of the subspaces in 240p,; then the geometry of papr, ensures small stepping descent method Ref
mSipnl (Irelﬁl Ap(x) + % | Hg + (a * x, y>> stay near subspace and converges toward the local minimizer close to a shift. CIETCNCES
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-3 ||| + (@ * @, y) approximates least square. If lengths n,py satisfy n > poly(py) and py > polylog(n), then with high probability, our algorithm

- Marginal minimize a over sphere. . : ~ o\ - : : : _q
- Domain dimension p / 3p; contains support of all shifts. ProGUCEs (a’ :U) satisfies H<a’ w) O(Sg [a’o]’ 5—¢ [517())“2 < € with running time O(poly(n,po, < ))
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