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I Short-and-Sparse Signals

DEFECTS IN CRYSTAL LATTICE FROM STM SIGNAL

Defect signature effects material properties

(superconductivity, semiconductivity, etc..)

A
A

Doped G-raphine
REPEATING DEFECTS




I Short-and-Sparse Signals

TEMPORAL PATTERN IN SPIKE SORTING & CALCIUM IMAGING
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Neurons transmit information via firing pattern

EVENT PATTERN IN LIGO
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Black hole merger has characteristic gravitational wave



I Short-and-Sparse Signals

IMAGE DEBLURRING

Observation Kernel Ao Natural Image

- Small blurring kernel

- Sparse image gradient



I Short-and-Sparse Deconvolution (SaSD) Model

ANALYSIS SETTING:

GIVEN OBSERVATION y = ag xxo € R", p < n

DECONVOLVE SHORT a; € R” AND SPARSE x; € R" SIGNALS
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I Short-and-Sparse Deconvolution (SaSD) Model

ANALYSIS SETTING:

GIVEN OBSERVATION y = ag xxo € R", p < n

DECONVOLVE SHORT a; € R” AND SPARSE x; € R" SIGNALS

In analysis the convolution # is circular®

In practice it can be either circular or direct
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I Symmetric Solutions in SaSD

ALL SHIFTED & SCALED (a9, xo) ARE SOLUTIONS

Yy - o s¢lao) ¥ (/@) s_gfxo]

si[ag] € R¥ is shift of ag by ¢ indices:
Sg[uo] = [0,...,0, ao , O,...,O]
—— ——
p+L p—L

In analysis sg[xo] is circular shift of xg by £
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We have many possible solutions ... but it is ok!




I Symmetric Solutions in SaSD

ALL SHIFTED & SCALED (a9, xo) ARE SOLUTIONS

i i
=il 0 2

y o s¢[ao] ¥ (/@) s_gfxo]

We have many possible solutions ... but it is ok!

Find (@,x) as SaSD solution where:
- Fixscale ||all, =1
- Accept every signed shift @ = +sy[ag] as solution
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I Algorithm: Bilinear Lasso

NATURAL, EFFECTIVE ALGORITHM—BILINEAR LASSO

min Allx +1axx—y|?
acS3—1, xeR* \_H Hl, 2 I y”F
sparsity surrogate data fidelity

FIND ONE OF THE MINIMIZERS (a,%) SOLVES SASD

Caveats:
1. Fixscale == optimize a over sphere where |ja|, = 1
2. Accept shifts = optimize a at higher dimension space R3t

T This space contains all shifts: {s_p[ao], ..., splao] }
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APPROXIMATION...

min  Ap(x) + 2 |laxx — y||?
i p(x) + 3 |l yllz

= i in \ 1 —yll?
o, (geigl p(x) + 5 lla*x yHF>



I Analysis of Algorithm: Approximate Bilinear Lasso
APPROXIMATION...

min  Ap(x) + Llaxx —y|?
i p(x) + 3 |l yllz

= min <m1n>\p() %Hu*x—y”%)

acS3pr—1 \xeR"
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I Analysis of Algorithm: Approximate Bilinear Lasso

APPROXIMATION...

min  Ap(x) + 2 |laxx — y||?
i p(x) + 3 |l yllz

= min (mmAp() %Ilu*x—yl\?e)

acS3r—1 \ xeR"
- mi 11 2 1,12 _
— muin, (mino(e) + & vl + 3l — v )
. 2 2 2
~ muin, (‘i) + 4 ol + 3l + byl - Gaxp) )
aes3r—1 | —
Accurateifa ~ §
or x highly sparse
. 1 (a2
= aég%ﬁl (JrcrgRr})\p —(axx,y)+ 3 ||x]F> + contant

PapL(A)

@apr, - Approximate Bilinear Lasso objective

p : Smooth sparsity surrogate



I Analysis of Algorithm: Approximate Bilinear Lasso

THEORY: STUDY APPROXIMATE BILINEAR LASSO
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I Analysis of Algorithm: Approximate Bilinear Lasso

THEORY: STUDY APPROXIMATE BILINEAR LASSO

. . 1 2
acgh1 (mn Ap(x) + L |lx[13 + (a *x,y>)

= min (‘OABL(a) s.t. ae SSp_l
a

Caveats:
- Performance is worse then Bilinear Lasso.....
- @apr(a) is min. of convex function of x that is easier to study

Toward analysis:
- Study the geometry landscape of ¢ 45; Over sphere
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I Geometry of Approximate Bilinear Lasso-1

LANDSCAPE OF (45, NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: Sy, ¢} = span {s¢, [ac], - - - , 8¢ [ao]}

Near s, [ao] Near Ste, 653 Stey .43}

N

L 5¢,[a0]

Pap(a) e

S0y [410

Left: 4pr (@) near one shift over sphere

- Strongly convex
- Local minimizer is near s;[ay] (a good solution!)



I Geometry of Approximate Bilinear Lasso-2

LANDSCAPE OF ¢ 5;, NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: Sy, . ¢} = span {s¢, [ac],- - ,s¢ [ao]}

Nearse, [ao] Near Ste, 2,3 Sty 82,5}

¥ >

Goealaol sy, lagl

Pap(a) e

s¢y [a0
sp—1 S¢q (A0 1

Mid: @ apr (@) near two shifts over sphere

- Negative curvature in between shifts breaks the symmetry

- Positive curvature away from shifts subspace




I Geometry of Approximate Bilinear Lasso-3

LANDSCAPE OF ¢ ,p; NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: Sy, 0,3 = span {s¢,[a0], - ,5¢,[a0]}

Nearse, [ao] Near 8o, e, Sty 2,5}

¥ >

g, 505 0]

1 (o)
i g

8¢, [ag
-1 sy (a0

Right: 41 (a) over three shifts and sphere

- Convex-concave-convex geometry in higher dimension

- Every pair of shifts has similar geometry as (Mid)



I Geometry of Approximate Bilinear Lasso-4

LANDSCAPE OF ¢,p;, NEAR SHIFTS SUBSPACE OVER SPHERE

Shifts subspace: Sy, ¢} = span {s¢, [ac], - - ,s¢, [ao]}

Nearse, [ao] Near Ste, 2,3 Sty 2,5}

>,

¥ >

e S50, (0] sey [agl—

Pape(a) e

se, [a0

st

CONCLUDE:
- LOCAL MINIMIZERS ARE NEAR SHIFTS
- NEGATIVE CURVATURE BREAKS SYMMETRY BTWN SHIFTS
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I Geometry of Approximate Bilinear Lasso-5

GEOMETRY OF ¢ ,p;, IS IDEAL FOR OPTIMIZATION
IN UNION OF SUBSPACES OF HIGH DIMENSION

...but not global

Ypoo |- U0S spanned by 4po 6 shifts of all combination
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I When does ¢ 45; has good geometry?-1
SHIFT-COHERENCE 1 OF ag:
B = maxi# ‘<Si[u0] 5 S]'[ao]>| N
pd 7
SPARSITY 6 OF xg:
xo ~ Bernoulli-Gaussian(6) l

01

SASD IS HARDER IF...

COHERENCE 1 T --- Solutions closer on sphere
SPARSITY 0 1 ------- More unknowns

ap LENGTHp T ----- More unknowns

y LENGTHn | ------- Fewer observations



I When does ¢ 45; has good geometry?-2

SPARSITY—COHERENCE TRADEOFF:




I When does ¢ 45; has good geometry?-2

SPARSITY—COHERENCE TRADEOFF:

Spiky Generic Tapered generic lowpass
ao N I\[\ (\j\ I\/\A AN
VW] U v
N L ppy ju & const.
X0 vT TT o L T Ij IUj T T TvL T 7
ML T
sty O~ pgl? 0 ~p;°* 6~ pg’

: 1 1
If uof ag increases from0 1, than 0 of xy decreases from T Ny bo



I Algorithm---Initialization

START a(®) NEAR SHIFTS SUBSPACE WITH CHUNK OF SIGNAL y

..signaly chunk is sum of few (truncated) shifts
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START a(®) NEAR SHIFTS SUBSPACE WITH CHUNK OF SIGNAL y

..signaly chunk is sum of few (truncated) shifts

y consists _ o
of shifts
v v

"

ap X0

a(0>near ~
n )\ A
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I Algorithm---Initialization

START a(”) NEAR SHIFTS SUBSPACE WITH CHUNK OF SIGNAL y

..signaly chunk is sum of few (truncated) shifts

y consists _ o
of shifts
v v

\" g

ap X0

a(o)ﬂear ~
S A A
T~ s '

wmdovvedy al=1

initialize: a(®) aisi[ao] + aysjlao]

- Inanalysis: a©) = —Pgs-1 Vepap Psyp—1 ([0, 4y, - 4, 07] )
- In practice: a© is normalized 07, y,,-- Yy 07]



I Algorithm---Retractive Minimization

SMALL STEP DESCENT METHOD STAYS NEAR SUBSPACE

..positive curvature of ¢ 45; away from subspace
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..positive curvature of ¢ 45; away from subspace
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I Algorithm---Retractive Minimization

SMALL STEP DESCENT METHOD STAYS NEAR SUBSPACE

..positive curvature of ¢ 45; away from subspace

SET SPARSITY PENALTY A < ¢ /4/pf WHEN xo ~ ¢ - N(0,1)

..because \ acts like "soft-threshold of shifts"

In analysis: curvilinear at < Pgsp—1[a — tg — t20]t

In practice: alternating gradient?

f Pg3p—1: Riemannian retraction; g: Riemannian gradient; »: Riemannian curvature

For bilinear Lasso set x(9) as minimizer given a(®); small step gradients avoid saddles

Y
L



I Theory---Geometry & Algorithm

THM1: GEOMETRY OF ¢ ,p;, OVER SUBSPACES

Given ay € R, u-shift coherent; x, ~ BG(0) long and
1o, 1
Po Pov/E + \/Po

then local minima of o ;. over UoS are close to shifts.

QA

THM2: PROVABLE ALGORITHM FOR SASD
A minimizing algorithm starts and stays near a subspace,

solves SaSD exactly up to a signed shift in poly time.

21



I Analysis---Shift Space

WRITE @ AS COEFFICIENT OF SHIFTS SUPERPOSITION

FORa NEAR S,, T C {—p,...

a = ZZGT OﬁgSg[ao] + ZZGTC aﬁsﬂ[ao] = CaoaT

Characterizes distance of a to subspace:

d(a,S,) = mf{ lloerell, = 32, osselao] :a}

P}
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I Analysis---Shift Space

WRITE @ AS COEFFICIENT OF SHIFTS SUPERPOSITION

FORa NEAR S,, T C {—p,...

a = ZZGT OﬁgSg[ao] + ZZGTC afsﬂ[ao] = CaoaT

Characterizes distance of a to subspace:

d(a,S,) = mf{ lloerell, = 32, osselao] :a}

WRITE 3 AS COHERENCE WITH SHIFTS FOR a NEAR S

IBE = <a7S[[ll0]> ) 18 = C:Oﬂ
Characterizes (geodesic) distance of a to each shifts:

ds(a,se[ag]) = cos|{a,s[ag))]

TCuO € R"*" js circular convolution of zero padded ag

P}

22



I Analysis---Gradient & Hessian in Shift Space

SIMPLIFY OBJECTIVE (withp = /1)

PapL(a)

=, min, \||x||; + % Hx — ¥ * uHIZ:

=c A ||soft [ * a]Hﬁ—% ||soft [ aHg — (soft)\[y x a],§ * a)

= A Hsoft,\[y* a]Hl—i—% Hsoft,\[y* aHi — (soft [ * a], soft\[§ * a]+ o)

= —% Hsoft)\[i// * a]Hi

23



I Analysis---Gradient in Shift Space
Veap(a) = — y«softy[y xa] = —iap * xq * softy[Xo * do * a
—_——

concentrate to x B

24



I Analysis---Gradient in Shift Space

Vepapr(a) = —t"yxsoft\[xa] = —t"ag xxo x soft[¥o * do a
—
concentrate to x B
= —tMag*x x[B] = =32, x[Ble selao]
———

~ soft[3]s

24



I Analysis---Gradient in Shift Space

Veap(a) = — y«softy[y xa] = —iap * xq * softy[Xo * do * a
—_——
concentrate to x

= —t"ap * x[0]

Large gradient region

= — >0 XIBle selao]
N

~ soft[3]s

gradient in shift space

gradient descent
suppresses small 3;

T
—x[Ble

I T T 1
? o B0
o B(at)

24



I Analysis---Gradient in Shift Space

Veap(a) = — y«softy[y xa] = —iap * xq * softy[Xo * do * a
—_———
concentrate to x B
*
= —agxx[B] = — 2, X[Ble se[ao]
———
~ soft[3]s
gradient descent
Large gradient region gradient in shift space suppresses small 3;

T I Py 1 T 1
—x[Be o B(a)
’“ o Bt
O |— —

Riemannian gradient: P, V@ apr.(a):

- Gradient iterates is soft-thresholding power method on shifts

- Gradient vanishes at solution or in between shifts

24



I Analysis---Hessian in Shift Space

v*V2p(a)v =—v"a * Xg * Pr[¥o *ilo x U]
—_———

~elysag

(Z =supp(soft [y = a]))

25



I Analysis---Hessian in Shift Space

v*V20(a)v =—v"a * xq * Pr[¥o o * V]
—_———
melysay
~e —((0 % )%, L{jageo>2}) =

(Z=supp(softx[y * a]))

— 320 B7(0)13,@)>A)

\oglcfunctlon of B

25



I Analysis---Hessian in Shift Space

0*6290(11)1) =—0"a0 * X * PI[.‘\X/O *to * V) (Z =supp(soft [y = a]))
—_———
melggsay
~e — (0 % 0)°%, Ljaguol>a}) = — 200 B2 (0)1(18,0)1>0)

logic function of B

Negative curvature region ] positive curvature away S
Strong convexity region Hessian~ 1¢,|>A}  negative curvature in S,
L T

anr SL
5
SC:sphere feeseeeer Rocicofforeeens ~ .. 5,

curvature

— ()




I Analysis---Hessian in Shift Space

0*6290(11)"0 =—0"ao * X0 * Pr[Xo *do * 0] (Z =supp(soft [y = a]))
—_———
melggsay
~e — (0 % 0)°%, Ljaguol>a}) = — 200 B2 (0)1(18,0)1>0)

logic function of B

Negative curvature region ] positive curvature away S
Strong convexity region Hessian =~ 1(8,/>A} negative curvaturein Sx
1 T

an 1
SC:sphere feeeeeeneRenioffomreens 1 T

st S
curvature J T

— ()

Riemannian Hessian: P,. ( VZp(a) + (~Vep(a),a) )P,.:
—_—— N————

pcurv.neg.  spherecurv. pos.
- |B,| 1: Direction within subspace has negative curvature
- 18,| {: Direction away subspace has positive curvature

o
&



I Analysis---Geometry Overview

FOUR SUBREGIONS:

T VA < 18] < 418 VA < |6 < 418;|
ry : : : :

Retrac;tive Gra;dient

N2

Sy (184l 1841)

N2

v

I|,@j|<m t<fi<s 1Bi] < vA

S{Li,j}(‘|af“||2)
o< distance to subspace

B1, 8¢ distance to the shifts
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WORKS DIRECTLY RELEVANT TO SASD

[Zhang, Kuo, Wright *18]: SaSD via dictionary learning, ¢* over sphere
- Better sparsty (ag Gaussian, & < p=2/3 ours 6 < p=3/4)
- Only recover "truncated shifts" has addition condition requirements

[Zhang, Lau, Kuo, Wright *17]: SaSD with 45, , highly sparse case
- Study only the dilute limit (n — oo) and highly sparse (6 < 1/p) case
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I Related Algorithmic Theory to SaSD-1

WORKS DIRECTLY RELEVANT TO SASD

[Zhang, Kuo, Wright *18]: SaSD via dictionary learning, ¢* over sphere
- Better sparsty (ag Gaussian, & < p=2/3 ours 6 < p=3/4)
- Only recover "truncated shifts" has addition condition requirements

[Zhang, Lau, Kuo, Wright *17]: SaSD with 45, , highly sparse case
- Study only the dilute limit (n — oo) and highly sparse (6 < 1/p) case

[Choudhary, Mitra *15] SaSD is unidentifiable
- If x¢ has special support pattern, SaSD is unsolvable

27



I Related Algorithmic Theory to SaSD-2

WORKS SOMEWHAT RELEVANT TO SASD
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I Related Algorithmic Theory to SaSD-2

WORKS SOMEWHAT RELEVANT TO SASD

[Ahmed, Recht, Romberg, '14] ag, xq random subspace, SDP
[Chi '16] ay random subspace, x sparse, atomic norm SDP
[Lee, Li, Junge, Bresler *16] random basis of sparsity, alt. min.
[Li, Ling, Strohmer, Wei, '16] random subspaces, nonconvex opt.
[Kech, Krahmer ’17] random basis/subspace, optimal injectivity

- Random basis has no shift-symmetry, solvable with convex method
- Can be applied in communication, not SaSD cases

28



I Related Algorithmic Theory to SaSD-2

WORKS SOMEWHAT RELEVANT TO SASD

[Ahmed, Recht, Romberg, '14] ag, xq random subspace, SDP
[Chi '16] ay random subspace, x sparse, atomic norm SDP
[Lee, Li, Junge, Bresler *16] random basis of sparsity, alt. min.
[Li, Ling, Strohmer, Wei, '16] random subspaces, nonconvex opt.
[Kech, Krahmer ’17] random basis/subspace, optimal injectivity

- Random basis has no shift-symmetry, solvable with convex method
- Can be applied in communication, not SaSD cases

[Wang, Chi ’16] Multi-instance BD, dictionary learning

[Li, Bresler 18] Multi-instance BD, global geometry
-Multipley,, ...y, can be reduced from SaSD, not vise versa.
- Has good global geometry, more like dictionary learning

28



I Performance of Bilinear Lasso-1

FOURIER TRANSFORM METHOD IN STM DATA

Real FT

Imaginary FT Magnitude FT

NaFeAs: N = 250

N=1

N=70

L
flw) = exp{—j(wiz; + wayi)} X i(w).
=il Defect signature (Fourier)
Frequency-variant “phase noise”

29



I Performance of Bilinear Lasso-2

RECOVERY WITH BILINEAR LASSO

Truth Data Measurement Y

Truth Kernel A,

Truth Activation Map X,

BDA Recovery

Recovered A

Recovered X

30



I Performance of Bilinear Lasso-3

IMAGE DEBLURRING—RECOVER SHARP IMAGE

- ag is blur kernel (d); xg is sparse gradient (ef)
- (a,d-f): original image, kernel, gradient x/y

- (c,g-i): recovered image, kernel, gradient x/y
31



I Performance of Bilinear Lasso-4

COMMON METHOD IN DEBLURRING OPTIMIZE ON SIMPLEX

min X [l + 4 |y —axx|?, st [, =1,a>0

- Itis areasonable physically
- But has bad local minimizersata = 8

- Optimize over sphere has good geometry

32



I Performance of Bilinear Lasso-5

COMPARISON WITH SOME OTHER METHODS

, Kernel Recovery (synthetic) , Kernel Recovery (real)
e
s 09
/
/ 08
[
o
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—ours 03 —ours
~eeeZhang 02 -eeeZhang
Krishr —--Krishnan
— -Sun (3] — -Sun
oLl S Liu N/ iu
005 007 009 011 013 015 017 019 021 007 009 011 013 045 017 019 021 0
rror Error

- Achieve relative good performance via simple method




I Wrapping Up

Main theoretical results: geometry of objective landscape,
and a provable algorithm for SaSD.

Optimizing ¢y, is not recommended in practice.

Algorithmic ideas (sphere, initialization, etc.) are useful for
practical method such as bilinear Lasso.
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